

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

General Formatting

	Indentation should be 4 spaces instead of tabs

	Each embedded block should be indented 1 more indentation level

In vim, you can use the following in your .vimrc to set this automatically:

set tabstop=4
set shiftwidth=4
set expandtab
set autoindent
set smartindent

while working in vi, this command will automatically indent:

gg=G

PHP

Ensure formatting meets Loris style guidelines by running phpcs with the LorisCS.xml
configuration file which accompanies these guidelines. You can run the tool
with the command

vendor/bin/phpcs --standard=docs/LorisCS.xml <file> [file2, file3, ...]

for any files you’ve modified or added. For new modules, ensure that PHPCS has been
run on the module directory and add the module to travis.yml

HTML

	HTML should never be mixed with code.

	HTML should go into a template and be rendered using a templating library (smarty for PHP).

	General formatting rules about indentation applies for each tag embedded inside
another tag of HTML:

<div>
 foo
</div>

Javascript

	Javascript should never be mixed with HTML or PHP code.

	Javascript should go into modules/js/

	Any newly written Javascript should pass ESLint with default options.

SQL

	Prepared statements MUST be used for any statements which involve user input.

	You must never use string concatenation (such as the example below) to create an SQL statement as this is a serious security risk. i.e.
Don’t do the following::

"SELECT abc FROM table WHERE field1='" + $_REQUEST['val'] + '"';

ANSI join syntax:

"table1 t1 JOIN table2 t2 ON(conditions)"

is preferred over a cross join with where conditions:

"table t1, table2 t2 WHERE conditions"

both for readability, and because it’s impossible to do outer joins using the latter syntax.

	In any query involving more than one table, each table should be given an alias (t1 and t2 above)

	SQL keywords should be ALL CAPS

Git:

	Any changes should be done on a branch based on the current development branch and contain only the changes which are applicable for that branch. (ie don’t merge master back into your branch, and don’t include commits that are unrelated) so that if someone merges the branch into their repository, they only get that branch’s changes. In particular, so pull requests merge the proper code.

	Commits should be atomic (self contained) and contain the changes and only the changes described by the commit message. The commit message should be a sentence that describes the goal of the change as a whole, for seeing the details of what code changed we have diff.

	Don’t try to correct unrelated code in the same commit, even if it violates these coding standards, that should be done in a separate branch/commit with a message such as “Fixed coding standard violations”. In particular, don’t try to fix whitespace since that is likely to cause conflicts even if you don’t have any real (code) changes to those lines.

	ALWAYS do a diff before committing (after doing “git add file1 file2” when you’re planning on doing git commit, you can use git diff –staged to see a diff of what will be committed). Ensure that nothing unexpected is included (such as whitespace changes. If using an external diff tool such as kdiff3, ensure your tool is whitespace sensitive)

Overview

This document details the modeling conventions to use for tables, attributes
and constraints definition in the Loris SQL database. These guidelines should
be followed when submitting a Pull Request to the Loris repository as well
as when reviewing the PR of a peer developer.

Disclosure: Due to the previous lack of standard in modeling,
we acknowledge that existing tables do not abide by the rules described
below. As the codebase and database are being cleaned-up, the existing
infrastructure will be re-designed to follow this guideline.

Tables

	The table name should be in snake_case.

	The table name should be in lowercase.

	The table name made of multiple word should use an underscore
in order to separate each of them.

	The table name should be in singular form.

	The table name should contain English words only.

	The table name should not contain abbreviation with the exception of
“_rel” for entity relationship tables.

	The table name should be a noun or group of nouns, as concise as
possible.

	When a single word is not sufficient to describe a table, the ordering
of the words in the name should reveal the concern of the table in a
broad-to-specific manner.

	i.e. A table containing the consent information of a candidate would be
named candidate_consent, candidate being the broader concern and just
consent is not sufficiently informative to rule out user consents and
examiner consents. A table containing the consent types would be called
as such consent_type.

	A table that is specific to a module should be prefixed with the
module name.

	i.e. A table named xyz used in module abc should be name abc_xyz.

	Acronyms should be avoided, however may be used when the acronym would
be commonly used by the neuroimaging community. The acronym should
only contain upper case letter. For historic reasons, “PSC” to refer to
a Site is an exception to this rule.

	When creating a table representing a relation between two or more tables.
Regardless of the relation type (many-to-many, one-to-many, many-to-one or
one-to-one), the table should have a composite name as such
table1_table2_rel.

	i.e. the table mapping users to their addresses would be named
user_address_rel where user is the name of the Users’ entity table and
address is the name of the Addresses’ entity table.

Fields

	The field name should be in CapitalizedWords.

	The field name should start with an Upper case letter.

	The field name should not contain any underscore.

	The field name should be in singular form.

	The field name should contain English words only.

	The field name should not contain abbreviations.

	Acronyms should be avoided, however may be used when the acronym would
be commonly used by the neuroimaging community. The acronym should
only contain upper case letter.

	The primary key field of a table should be named <TableName>ID. While
the table name is snake_case, the field names referencing it (such as the
primary key) should follow field naming conventions. (ie. my_table’s
primary key should be MyTableID).

	i.e. the name of the primary identifier of the country table should be
CountryID.

	When an explicit auto-incremented primary key field is present, it should be
of type unsigned int. Most tables should have an explicit primary key field.

	When adding a field which serves as a foreign key to another table
in the database, the field should follow the same convention as above
ReferenceTableNameID.

	i.e. The country table would have a primary identifier field named
CountryID and another table a foreign key reference to the country
table with a field named CountryID.

	When two(2) fields refer to the same foreign key id, a qualifier should
be added to the names.

	i.e. Two fields pointing to the CountryID in the same table should
be named like in OriginCountryID and DestinationCountryID.

	Both primary key and foreign key fields should end with ID
in upper case.

	Date fields should not just be named “Date”. A
qualifier like “BoughtDate” or “DateAccepted” should be added as
required.

	No ENUM attributes should be used in the default LORIS schema
or modules. Instead a lookup table to refer to possible choices should be used.

Field Ordering

	The primary key is always in the first field.

	The foreign key field(s) follow the primary key.

	Other indexed fields (Unique and Index key) are after the primary and foreign
key if present. Fields that are part of a composite key should be positioned
together as much as possible.

	Other fields follow.

	Text, Json and Blob are the last fields in that order when present.

	Mandatory fields should generally be place before optional fields

	Within each section, it recommended but not an obligation that fix size fields
are to be positioned before variable size fields (Numeric, Date and Char before
Varchar).

Constraints

	A foreign key constraint definition should contain ON DELETE and
ON UPDATE clause. Do not rely on default behavior.

Naming

	Although not an enforced rule, recommendation for naming constraint are
as follow:

	The constraint name should be specifically declared.

	The constraint name should be in singular form.

	The constraint name should be of the proper format:

	Primary key PK_<table_name>

	Unique key UK_<table_name>_<ColumnName(s)>

	Foreign key FK_<table_name>_<ColumnName>

	Check constraint CK_<table_name>_<ColumnName>_<Check>

Other parameters

	Tables should be normalised to 3rd normal form unless there is a strong
justification to do otherwise.

	Engine should be InnoDB (ENGINE=InnoDB) for all tables unless specific
requirements demand otherwise.

	The character encoding used by LORIS should be UTF-8. This implies that MySQL
tables should use CHARSET=’utf8mb4’ (note the mb4). If the mb4 variant causes
MySQL row size violations, CHARSET=’utf8’ may be used. (However, these exceptions
should be rare outside of “legacy” tables due to the 3NF requirement.)

	Be explicit instead of implicit.

0.0: Preamble

This file describes the general format to be used by Loris to describe
instruments as a JSON object and will likely become an important part of the
API and/or mobile specific versions of Loris.

This format will supercede the .linst files created by the current instrument builder.

1.0: Instrument format overview

Instruments consist of a JSON object describing the instrument to be loaded
and rendered. The object contains a Meta key which contains an object representing
meta data about the instrument and the version of it described by the JSON object.

An implementation should ignore any keys it doesn’t expect so as to make it easier to extend
this standard without breaking backwards compatibility. Instruments MAY implement both
the instrument format described below and the accompagnying rules format in the same
JSON object, or they MAY be used independently.

1.1: The Top Level JSON object

The high level view of the JSON object looks like this:

Instrument format:

{
 "Meta" : {
 "InstrumentVersion": string,
 "InstrumentFormatVersion" : "v0.0.2-dev",
 "ShortName" : "InstrumentName", /* Required */
 "LongName" : "The Human Readable Instrument Name", /* Required */
 "IncludeMetaDataFields" : boolean
 },
 "Elements" : [PageElements]
}

Where each key should be interpreted as so:

Meta.InstrumentVersion: A string (determined by the instrument author) to describe the
version of the instrument being described by this object. There
are no restrictions on how to determine the InstrumentVersion,
but it SHOULD change with any changes to the instrument object.

For instance, if an InstrumentVersion of “MyInstrument-V1” exists
and the options were changed in a SelectPageElement to better match
the paper copy of the instrument, the InstrumentVersion of the new
version SHOULD be changed to “MyInstrument-V2” or in some other way
that could differentiate the instrument objects.

The InstrumentVersion is a self-contained string which can be interpreted
independently of the ShortName or LongName of the instrument.

Meta.InstrumentFormatVersion: A hardcoded string specifying what version of this spec
the instrument is written to comply to. For this spec, must be “v0.0.1b-dev”.
Required.

Meta.ShortName: A short name for this test suitable for a database table or file name.

Meta.LongName: The long, human readable version of this instrument name.

Meta.IncludeMetaDataFields: An implementation (such as Loris) may have special fields
that are included with every instrument such as a scored Candidate Age or
examiner for the instrument. If this is true, a rendering of this instrument
SHOULD include those fields. If false, the instrument has a reason to exclude
them.
Default: true

Elements: An array of elements which this instrument consits of. Elements are described by
JSON objects defined below and can be either an individual element, or an ElementGroup.

2.0: Page Elements

PageElements represent an individual element in an instrument such as a select box or textbox.
Each type of element may contain type specific options. In general, a PageElement object has
the following format:

{
 "Type" : string,
 "Name" : UniqueQuestionIdentifier,
 "Description" : "Human readable question text",
 "Options" : {
 /* TypeDependent JSON Options */
 }
}

Type: A string representing what type of element it is.

Name: A unique (within the instrument) identifier to identify
this PageElement. This identifier MUST be unique and
MUST NOT contain special characters as an implementation
MAY use it as an identifier for a database column or DOM object.
Name may be required or may not depending on the type. The
descriptions of the types below only specify if it’s required,
but these restrictions apply to all types where it’s required.

Description: The human readable description of this element, such
as question or label text. This may or may not be required
depending on element type.

Options: An object containing the type dependent options for this element. If omitted
defaults are used.

2.1: Specific element types

2.1.x describes input related types2.2.x describes layout related types3.x describes element group related types.

2.1.1: Select Element

A Select element encompasses both HTML select and multiselect types and appears
as follows. It denotes a group of values of which the user must select one option
(or many, if AllowMultiple is true):

{
 "Type" : "select",
 "Name" : REQUIRED,
 "Description" : REQUIRED,
 "Options" : {
 "Values" : {
 "SaveValue" : "Human Readable Description",
 "SaveValue2" : "Another human readable description"
 ...
 },
 "AllowMultiple" : boolean,
 "RequireResponse" : boolean
 }
}

Type: MUST be select.

Name: Required. Follows PageElement.Name rules.

Description: Required. Follows PageElement.Name rules.

Options.Values: REQUIRED. Contains a JSON object specifying the
options to be selected. Each key/value corresponds
to <option value="JSONKey">JSONValue</option> in an
HTML implementation. The JSONKey contains the value
to be saved if selected, and the JSONValue contains
the human friendly text to display to the user.

Options.AllowMultiple: Boolean. If true, multiple values may be
selected by the user at once. If false, only
one option can be selected.
Default: false

Options.RequireResponse: Boolean. If true, an implementation should
automatically add a not_answered option to the
select box in addition to the values specified
to allow the user to explicitly not answer a question
but require that some answer is entered.
If false, it should not.
This is done instead of simply adding the option to
Values to ensure consistency with other PageElement types
such as date or text.
Default: true.

2.1.2: TextElement

A text element represents a place for the user to enter text into a form and
save it. The format is as follows:

{
 "Type": "text",
 "Name": REQUIRED,
 "Description": REQUIRED,
 "Options" : {
 "Type" : "large|small",
 "Regex" : "string",
 "RequireResponse" : boolean
 }
}

Type: MUST be “text”.

Name: Required. Follows PageElement.Name rules.

Description: Required. Follows PageElement.Name rules.

Options.Type: Either “large” or “small”. If “large”, the user is meant to enter
a lot of text (ie. a comment box) and is likely to be represented
by a <textarea> in an HTML implementation.
If “small” the user is meant to enter a little text and is likely
to be implemented by a <input type="text"> in an HTML implementation.
Default: small

Options.Regex: Optional, a regex that the data entered must conform to. If not
entered, no rules are enforced.

Options.RequireResponse: If true, there MUST be some way for the user to specify
that the question is not answered, regardless of other rules. If false,
the not answered option is suppressed.
Default: true

2.1.3: DateElement

A DateElement represents a way for a user to enter a date. The general format is
as follows:

{
 "Type": "date",
 "Name": REQUIRED,
 "Description": REQUIRED,
 "Options" : {
 "MinDate" : "YYYY-MM-DD",
 "MaxDate" : "YYYY-MM-DD",
 "RequireResponse" : boolean
 }
}

Type: MUST be “date”.

Name: Required. Follows PageElement.Name rules.

Description: Required. Follows PageElement.Name rules.

Options.MinDate: The minimum date that can be chosen by the user. Format is YYYY-MM-DD

Options.MaxDate: The maximum date that can be chosen by the user. Format is YYYY-MM-DD

Options.RequireResponse: Follows the same rules as TextElement:Options.RequireResponse.

2.1.4: NumericElement

A NumericElement represents a numeric data input and has the general form of:

{
 "Type": "numeric",
 "Name": REQUIRED,
 "Description": REQUIRED,
 "Options" : {
 "NumberType": "integer|decimal",
 "MinValue": number,
 "MaxValue": number
 }
}

Type: MUST be “numeric”.

Name: Required. Follows PageElement.Name rules.

Description: Required. Follows PageElement.Name rules.

Options.NumberType: “integer” or “decimal”. If “integer”, the input must be
an integer. If “decimal”, it can contain a decimal point.

Options.MinValue: A number representing the minimum value that can be chosen
by the user. May be a decimal if “NumberType” is decimal, and
an integer if “NumberType” is integer.

Options.MaxValue: A number representing the maximum value that the user can select.
Type of number depends on “NumberType” value. If both MinValue and
MaxValue are specified MaxValue MUST be greater than or equal to
MinValue.

Options.RequireResponse: Follows the same rules as TextElement:Options.RequireResponse.

2.1.5: ScoreFieldElement

A score field represents a placeholder to display/save values based on other
data entered by the user in the instrument but does not directly get input from
the user. It has the following form.

{
 "Type": "score",
 "Name": REQUIRED,
 "Description": OPTIONAL,
 "Options": {
 /* None currently */
 }
}

Type: MUST be “score”.

Name: Required. Follows PageElement.Name rules. The Name MAY be used by an
implementation as a field name to save calculated data into.

Description: Optional. Follows PageElement.Name rules. If not specified, the
score will be displayed with no accompagning text.

2.2: Layout related types

The following types are related to page layout and not directly related to user input,
but are nonetheless important for rendering of instruments. For these elements, Name
is NOT REQUIRED and unused.

2.2.1: HeaderElement

A HeaderElement represents a header which should be displayed with some level of prominence
(ie bolded or centered.) 1 is the most prominent header, and lower numbers should be used
for subsection/subheaders. There is no need to add a header with the instrument name as an
implementation of this spec MAY already do so. There is no limit for how many levels of headers
may be used by an instrument.

{
 "Type": "header",
 "Description": "Required",
 "Options": {
 "Level": integer
 }
}

Type: MUST be “header”.

Description: Required. The text to display in the header.

Options.Level: The level of the header. 1 is the most prominent and subheaders (or sub-subheaders, or
sub-sub-sub-headers) get increasingly high levels.

2.2.2: LabelElement

A label element represents some text to display to the user with no accompagnying user
input. It has the following form:

{
 "Type": "label",
 "Description" : REQUIRED,
 "Options": {
 /* None currently */

 }
}

Type: MUST be “label”.

Description: Required. The text to display in the label.

Options: None.

3.0.0: ElementGroups

ElementGroups represent some kind of grouping of elements and may represent,
for instance, a table, rows in that table, pages, or groups of elements that aren’t
tabular but should be logically grouped together into a row.

Groups have the general form of:

{
 "Type" : "ElementGroup",
 "GroupType" : Type,
 "Elements" : [/* Array of elements */]
}

Type: MUST be “ElementGroup”.

GroupType: must be one of the types defined in section 3 of this documents.

Elements: must be an array of elements from either section 2 or 3 of this document.
Specific GroupTypes may have restrictions on what type of element is permitted
within that GroupType’s elements.

3.1: Page

A page group represents a group of questions to be displayed on a single page together. It
has the following form:

{
 "Type" : "ElementGroup",
 "GroupType" : "Page",
 "Elements" : [/* Array of elements of any element or group type defined in this document */],
 "Description" : OPTIONAL
}

Any element that it not part of a Page group will be placed on a default top level page.

Type: MUST be “ElementGroup”.

GroupType: MUST be “Page”.

Elements: May be of any type except with the exception that a Page MUST NOT have further
Page groups embedded into the Page.

Description: OPTIONAL. A name to give the page which may be used to aid in page navigation.
If missing, an implementation may use any method it chooses to differentiate
pages.

3.2 Element

An Element group denotes a collection of elements which should be displayed together and
separated by a delimiter.

They often have rules which work together and may be interdependent.

Element groups have the form:

{
 "Type" : "ElementGroup",
 "GroupType" : "Element",
 "Elements" : [/* Array of elements defined in section 2 of this document */]
}

Type: MUST be “ElementGroup”.

GroupType: MUST be “Element”.

Elements: May be any element type defined in section 2, but MUST NOT contain further
subgroups.

3.3 Table

A table group denotes a group of rows that should be grouped together into a tabular form.

It contains only row groups which should all be of the same size. If the row groups are not
of the same size, rows of a table rendering should be padded with empty cells at the end
to grow smaller rows to the size of the biggest row.

{
 "Type" : "ElementGroup",
 "GroupType" : "Table",
 "Elements" : [/* Array of Row group elements defined in section 3.4*/],
 "Description" : OPTIONAL
}

Type: MUST be “ElementGroup”.

GroupType: MUST be “Table”.

Elements: MUST only contain Row groups.

Description: OPTIONAL. A table footer to label the table figure.

3.4 Row

Row groups denote rows in a table. If rows are not in a table, they should be rendered
such that they are an element group which spans the entire width of the page independently
of other rows on the page.

If row groups are part of a table, they should be rendered into a tabular form where each
column of the table has the same width. Table headers can be created by adding element types
of type “header” into the row group.

{
 "Type" : "ElementGroup",
 "GroupType" : "Row",
 "Elements" : [/* Array of elements defined in section 2 of this document */]
}

Type: MUST be “ElementGroup”.

GroupType: MUST be “Row”.

Elements: May contain any standard element type from section 2.

Loris API - v0.0.2

1.0 Overview

This document specifies the Loris REST API.

Any request sent to $LorisRoot/api/$APIVERSION/$API_CALL will return either a JSON object
or no data. The Loris API uses standard HTTP error codes and the body of any response will
either be empty or contain only a JSON object for any request.

For brevity, the $LorisRoot/api/$APIVERSION is omitted from the definitions in this
document. This document specifies $APIVERSION v0.0.2 and it
MUST be included before the request in all requests.

HTTP GET requests NEVER modify data. PUT, POST or PATCH requests MUST be used to modify
data as per their definitions in the HTTP/1.1 specification. Any methods not supported
will respond with a 405 Method Not Allowed response and an appropriate Allow header set (as
per HTTP documentation.)

PUT requests either create or overwrite all data for a given resource (instrument/
candidate/visit/etc.) Any fields not explicitly specified in the PUT request are nulled.

PATCH requests are identical to PUT requests, but any fields not explicitly mentioned are
unmodified from their current value.

All GET requests include an ETag header. If a PUT or PATCH request is sent and it does
not include an ETag, or the ETag does not match the currently existing ETag for that resource,
it will result in a 403 Forbidden response. PUT or POST requests used for the creation of resources
do not require ETags.

DELETE is not supported on any resource defined in this API.

1.1 Authentication

If a user is logged in to Loris and can be authenticated using the standard session mechanism,
no further authentication is required. Requests will be evaluated as requests from that user,
so that standard Loris modules can simply use the API.

If a user is not logged in to Loris (for instance, in a third party app or a CORS application),
they can be authenticated using JSON Web Tokens [https://jwt.io].

The client should POST a request to /login with a payload of the form

{
 "username" : username,
 "password" : password
}

If the username and password are valid, the API will respond with a 200 OK and payload
of the form

{
 "token" : /* JWT token */
}

Otherwise, it will return a 401 Unauthorized response.

If the token is returned, it should be included in an “Authorization: Bearer token” header
for any future requests to authenciate the request.

2.0 Project API

The Project API lives under the /projects portion of the API URL hierarchy. It is used to get
project specific settings or data. PUT and PATCH are not currently supported for the part of
the API living under /projects.

GET /projects

Will return a list of projects in this Loris instance. There is no corresponding PUT or PATCH
request. The JSON returned is of the form:

{
 "Projects" : {
 "ProjectName1" : {
 "useEDC" : boolean,
 "PSCID" : PSCIDSettings
 },
 "ProjectName2" : {
 "useEDC" : boolean,
 "PSCID" : PSCIDSettings
 },
 ...
}

If the Loris instance does not use projects, the API will return a single project called “loris”
with the appropriate settings for the Loris instance.

useEDC represents a boolean determining whether the EDC date should be included
in candidates returned by the API.

PSCID represents a JSON object with the configuration settings for PSCIDs in this
project.

It has the form:

{
 "Type" : "prompt|auto",
 "Regex" : "/regex/"
}

Where regex is a regular expression that can be used to validate a PSCID for this project.

If the type is “prompt”, the user should be prompted to enter the PSCID for new candidates.
If the type is “auto”, the server will automatically generate the PSCID.

Note that sometimes in Loris configurations “Site” is a part of the PSCID. This will be
denoted by the string “SITE{1,1}” inside of the regex returned. This string should be replaced
by the 3 letter site alias before attempting to pass this regex to a regular expression parser
or it will result in false negatives.

GET /projects/$ProjectName

Returns a 200 OK response if the project exists, and 404 Not Found if it does not (the same is
true of any portion of the API under /projects/$ProjectName.)

The body of the request to /projects/$ProjectName will be an entity of the form:

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Visits" : ["V1", "V2", ...],
 "Instruments" : ["InstrumentName", "InstrumentName2", ...],
 "Candidates" : ["123543", "523234", ...]
}

GET /projects/$ProjectName/instruments/

Will return a JSON object of the form

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Instruments": {
 "InstrumentName" : {
 "FullName" : "Long Name",
 "Subgroup" : "Subgroup Name",
 "DoubleDataEntryEnabled" : boolean
 },
 "Instrument2" : {
 "FullName" : "Long Name",
 "Subgroup" : "Subgroup Name",
 "DoubleDataEntryEnabled" : boolean
 },
 ...
 }
}

Where the InstrumentNames are the “Short Name” of all the instruments used/installed in this project.

GET /projects/$ProjectName/visits/

Will return a JSON object of the form

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Visits" : ["V1", "V2", ...],
}

Where V1, V2, … are the visits that may exist for this project

GET /projects/$ProjectName/candidates/

will return a JSON object of the form

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Candidates" : ["123456", "342332", ...],
}

where 123456, 342332, etc are the candidates that exist for this project.

2.2 Instrument Forms

GET /projects/$ProjectName/instruments/$InstrumentName

Will return a 200 response on success and 404 Not Found if $InstrumentName is not a
valid instrument for this instance of Loris.

This will return a JSON representation of the instrument form. If available, rules and form will
be combined into a single JSON object. The format for the JSON returned is specified in the
accompanying InstrumentFormat.md and RulesFormat.md documents. The JSON document can be used
to render the form by a client.

PUT and PATCH are not supported for instrument forms.

Methods for getting/putting data into specific candidates are specified in section 3.

3.0 Candidate API

The /candidate portion of the API is used for retrieving and modifying candidate data and
data attached to a specific candidate or visit such as visits or instrument data. Portions
of this reference a CandidateObject. A CandidateObject is a JSON object of the form

{
 "CandID" : CandID,
 "Project" : ProjectName,
 "PSCID" : PSCID,
 "Site" : Site,
 "EDC" : "YYYY-MM-DD",
 "DoB" : "YYYY-MM-DD",
 "Gender" : "Male|Female"
}

representing a candidate in Loris.

GET /candidates/

will return a JSON object of the form

{
 "Candidates" : [CandidateObject1, CandidateObject2, CandidateObject3, ...]
}

containing ALL candidates present in this Loris instance.

A new candidate can be created by sending a POST request to /candidates.

The body of the POST request should be a candidate key with a JSON object of the form:

{
 "Candidate" : {
 "Project" : ProjectName,
 "PSCID" : PSCID,
 "EDC" : "YYYY-MM-DD",
 "DoB" : "YYYY-MM-DD",
 "Gender" : "Male|Female"
 }
}

EDC is only required if useEDC is enabled for the project according to the
project settings.

PSCID is only required if the generation type in the Loris config is set to
“prompt”.

The candidate will be created at the site of the user using the API’s site.
A response code of 201 Created will be returned on success, 409 Conflict if
the PSCID already exists, and a 400 Bad Request if any data provided is invalid
(PSCID format, date format, gender something other than Male|Female, invalid project
name, etc). A successful POST request will return the CandID for the newly
created candidate in a JSON object of the form:

{
 "Meta":{
 "CandID":123456
 }
}

PUT / PATCH methods are not supported on /candidate in this
version of the Loris API.

3.1 Specific Candidate

If a GET request for a candidate is issued such as

GET /candidates/$CandID

A JSON object representing that candidate will be returned.

The JSON object is of the form

{
 "Meta" : CandidateObject,
 "Visits" : ["V1", "V2", ...]
}

where V1, V2, etc are the visit labels that are registered for this
candidate.

PUT / PATCH are not supported for candidates in this version of the
API.

It will return a 200 OK on success, a 404 if the candidate does not exist, and
a 400 Bad Request if the CandID is invalid (not a 6 digit integer). The same is
true of all of the API hierarchy under /candidates/$CandID.

3.2 Getting Candidate visit data

A GET request of the form

GET /candidates/$CandID/$VisitLabel

Will return a JSON object of the metadata for that candidate’s visit.

The JSON object is of the form:

{
 "Meta" : {
 "CandID" : CandID,
 "Visit" : VisitLabel,
 "Battery" : "NameOfSubproject"
 },
 "Stages" : {
 "Screening" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 },
 "Visit" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 },
 "Approval" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 }
 }
}

A PUT of the same format but with only the Meta fields will create the VisitLabel
for this candidate, in an unstarted stage if the Visit label provided is valid.

PATCH is not supported for Visit Labels.

It will return a 404 Not Found if the visit label does not exist for this candidate
(as well as anything under the /candidates/$CandID/$VisitLabel hierarchy)

Any of the Stages may not be present in the returned result if the stage has not
started yet or is not enabled for this project (ie. if useScreening is false in
Loris, or Approval has not occurred)

3.3 Candidate Instruments

GET /candidates/$CandID/$VisitLabel/instruments

Will return a JSON object of the form.

{
 "Meta" : {
 "CandID" : CandID,
 "Visit" : VisitLabel
 },
 "Instruments" : ["InstrumentName", "AnotherInstrument", ...]
}

Where the instruments array represents the instruments that were administered for that
candidate at that visit. InstrumentNames are the short names and the forms for them
SHOULD all be retrievable through the project portion of the API.

PUT / PATCH / POST are not currently supported for candidate instruments.

3.3 The Candidate Instrument Data

GET /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]
PUT /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]
PATCH /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]

These will retrieve or modifiy the data for $InstrumentName. If /dde is present, the double data
entry form of the data will be retrieved/modified. If absent, the “single data entry” version
of the form is used instead.

The format returned by a GET request is a JSON document of the form:

{
 "Meta" : {
 "Instrument" : $InstrumentName,
 "Visit" : $VisitLabel,
 "Candidate" : $CandID,
 "DDE" : boolean
 },
 "$InstrumentName" : {
 "FieldName1" : "Value1",
 "FieldName2" : "Value2",
 ...
 }
}

Including the values of ALL fields for this instrument, including score field values.

The body of a PUT request to the same URL MUST contain a JSON object of the same format. Data PUT
to the URL SHOULD contain all fields with data entry. The server will null the data for keys not
specified. A PUT request MAY not specify score columns that will be calculated/overwriten by
server-side scoring. If the client attempted to score fields client-side and the value passed by the PUT
request conflict with the server-side calculation of the score, the server-side calculation will win.
Any keys specified in the document PUT that do not match a corresponding field in the form MAY be ignored.

The specification for PATCH request is similar to a PUT request, with the exception that any
fields not specified MUST be unmodified by the server rather than nulled. In most cases a series
of PATCH requests SHOULD be used rather than a single PUT request for a client with pagination.

A 200 OK will be returned on success, and a 404 Not Found if $InstrumentName is not a valid instrument installed in this Loris instance.

3.3.1 Instrument flags

GET /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags
PUT /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags
PATCH /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags

This URL is used to GET and modify flags for an instrument. The standard GET/PUT/PATCH
rules apply. However, PATCH and PUT requests MUST include the “Meta” attribute and all
fields in it MUST be specified and match the values in the URL, otherwise a “400 Bad request”
error is returned and no data is modified. Like instruments, the [/dde] component is optional
and used to differentiate single data entry and double data entry flags.

The “Validity” flag may be missing, if the ValidityEnabled flag is not true for this instrument.

The format of the JSON object for these URLS is:

{
 "Meta" : {
 "Candidate" : CandID,
 "Visit" : VisitLabel,
 "Instrument" : InstrumentName,
 "DDE" : boolean
 },
 "Flags" : {
 "Data_entry" : "In Progress|Complete",
 "Administration" : "None|Partial|All",
 "Validity" : "Questionable|Invalid|Valid"
 }
}

4.0 Imaging Data

The imaging data mostly lives in the /candidates/$CandID/$Visit portion of the REST API
namespace, but is defined in a separate section of this document for clarity purposes.

4.1 Candidate Images

GET /candidates/$CandID/$Visit/images

A GET request to /candidates/$CandID/$Visit/images will return a JSON object of
all the images which have been acquired for that visit. It will return an object of
the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 },
 "Files" : [{
 "OutputType" : "native",
 "Filename" : "abc.mnc",
 "AcquisitionType" : "t1w/t2w/etc",
 }, /* More files */]
}

4.2 Session Imaging QC

GET /candidates/$CandID/$Visit/qc/imaging
PUT /candidates/$CandID/$Visit/qc/imaging

To retrieve the session level imaging QC data for a visit, a request can
be made /candidates/$CandID/$Visit/qc/imaging. It will return a JSON object
of the form

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel
 },
 "SessionQC" : "Pass|Fail"
 "Pending" : boolean
}

A PUT to the same location will update the QC information.

4.3 Image Level Data

GET /candidates/$CandID/$VisitLabel/images/$Filename

Returns raw file with the appropriate MimeType headers for each Filename retrieved from
/candidates/$CandID/$Visit/images.

Only GET is currently supported, but future versions of this API may include PUT
support to insert new (or processed) data into LORIS.

4.3.1 Image Level QC Data

GET /candidates/$CandID/$VisitLabel/images/$Filename/qc
PUT /candidates/$CandID/$VisitLabel/images/$Filename/qc

Returns file level QC information. It will return a JSON object of the form

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "QC" : "Pass|Fail",
 "Selected" : boolean
}

PUT requests to the same URL will update the QC information.

4.4 Alternate formats

There are occasions where you may want to retrieve a file in a different format
than it is stored in LORIS. This can be achieved by adding /format/$FormatType
to the URL in the API. Currently supported other formats are below. Other formats
may be added in a future version of this API.

An attempt to convert an image to an unsupported format may result in a
415 Unsupported Media Type HTTP error.

4.4.1 Raw Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/raw

This will return the data in raw format (ie. the output of mnc2raw)

4.4.2 BrainBrowser Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/brainbrowser

This (in combination with raw) will let you extract the headers in a JSON
format that BrainBrowser can load. It will return a JSON object of the format

{
 "xspace": {
 "start":"",
 "space_length":"",
 "step":""},
 "yspace": {
 "start":"",
 "space_length":"",
 "step":""
 },
 "zspace": {
 "start":"",
 "space_length":"",
 "step":""
 },
 "order":["xspace","zspace","yspace"]
}

4.4.3 Thumbnail Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/thumbnail

This will return a JPEG image that can be used as a thumbnail to represent this
imaging acquisition statically (such as in the LORIS imaging browser.)

4.5 Image Headers

The LORIS API allows you to extract headers from the images in a RESTful manner.
The following methods are defined:

4.5.1 Header Summary

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers

This will return a JSON summary of the important headers for this filename. It
will return a JSON object of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "Physical" : {
 "TE" : "",
 "TR" : "",
 "TI" : "",
 "SliceThickness" : "",
 },
 "Description" : {
 "SeriesName" : "",
 "SeriesDescription" : ""
 }
 "Dimensions" : {
 "XSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "YSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "ZSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "TimeDimension" : {
 "Length" : "",
 "StepSize" : ""
 }
 }
}

All of the dimensions are optional and may not exist for any given
file (for instance, a 3D image will not have a time dimension.)

4.5.2 Complete Headers

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers/full

This will return a JSON object with ALL headers for this acquisition.

The JSON will be of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "Headers" : {
 "dicomheader" : "value",
 /* more headers ... */
 }
}

4.5.3 Specific Header

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers/$HeaderName

This will return a JSON object that extracts one specific header from $Filename.

The JSON object is of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename,
 "Header" : $HeaderName
 },
 "Value" : string
}

Loris API - v0.0.0-dev

1.0 Overview

This document specifies the Loris REST API.

Any request sent to $LorisRoot/api/$APIVERSION/$API_CALL will return either a JSON object
or no data. The Loris API uses standard HTTP error codes and the body of any response will
either be empty or contain only a JSON object for any request.

For brevity, the $LorisRoot/api/$APIVERSION is omitted from the definitions in this
document. This document specifies $APIVERSION v0.0.3-dev and it
MUST be included before the request in all requests.

HTTP GET requests NEVER modify data. PUT, POST or PATCH requests MUST be used to modify
data as per their definitions in the HTTP/1.1 specification. Any methods not supported
will respond with a 405 Method Not Allowed response and an appropriate Allow header set (as
per HTTP documentation.)

PUT requests either create or overwrite all data for a given resource (instrument/
candidate/visit/etc.) Any fields not explicitly specified in the PUT request are nulled.

PATCH requests are identical to PUT requests, but any fields not explicitly mentioned are
unmodified from their current value.

All GET requests include an ETag header. If a PUT or PATCH request is sent and it does
not include an ETag, or the ETag does not match the currently existing ETag for that resource,
it will result in a 403 Forbidden response. PUT or POST requests used for the creation of resources
do not require ETags.

DELETE is not supported on any resource defined in this API.

1.1 Authentication

If a user is logged in to Loris and can be authenticated using the standard session mechanism,
no further authentication is required. Requests will be evaluated as requests from that user,
so that standard Loris modules can simply use the API.

If a user is not logged in to Loris (for instance, in a third party app or a CORS application),
they can be authenticated using JSON Web Tokens [https://jwt.io].

The client should POST a request to /login with a payload of the form:

{
 "username" : username,
 "password" : password
}

If the username and password are valid, the API will respond with a 200 OK and payload
of the form:

{
 "token" : /* JWT token */
}

Otherwise, it will return a 401 Unauthorized response.

If the token is returned, it should be included in an “Authorization: Bearer token” header
for any future requests to authenciate the request.

2.0 Project API

The Project API lives under the /projects portion of the API URL hierarchy. It is used to get
project specific settings or data. PUT and PATCH are not currently supported for the part of
the API living under /projects.

GET /projects

Will return a list of projects in this Loris instance. There is no corresponding PUT or PATCH
request. The JSON returned is of the form:

{
 "Projects" : {
 "ProjectName1" : {
 "useEDC" : boolean,
 "PSCID" : PSCIDSettings
 },
 "ProjectName2" : {
 "useEDC" : boolean,
 "PSCID" : PSCIDSettings
 },
 ...
}

If the Loris instance does not use projects, the API will return a single project called “loris”
with the appropriate settings for the Loris instance.

useEDC represents a boolean determining whether the EDC date should be included
in candidates returned by the API.

PSCID represents a JSON object with the configuration settings for PSCIDs in this
project.

It has the form:

{
 "Type" : "prompt|auto",
 "Regex" : "/regex/"
}

Where regex is a regular expression that can be used to validate a PSCID for this project.

If the type is “prompt”, the user should be prompted to enter the PSCID for new candidates.
If the type is “auto”, the server will automatically generate the PSCID.

Note that sometimes in Loris configurations “Site” is a part of the PSCID. This will be
denoted by the string “SITE{1,1}” inside of the regex returned. This string should be replaced
by the 3 letter site alias before attempting to pass this regex to a regular expression parser
or it will result in false negatives.

2.1 Single project

GET /projects/$ProjectName

Returns a 200 OK response if the project exists, and 404 Not Found if it does not (the same is
true of any portion of the API under /projects/$ProjectName.)

The body of the request to /projects/$ProjectName will be an entity of the form:

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Visits" : ["V1", "V2", ...],
 "Instruments" : ["InstrumentName", "InstrumentName2", ...],
 "Candidates" : ["123543", "523234", ...]
}

2.1.1 Single project images

GET /projects/$ProjectName/images/

Will return a JSON object of the form:

{
 "Images" : [
 {
 "Candidate": "123456",
 "PSCID": "MTL001",
 "Visit": "V1",
 "Visit_date": "2016-08-09", /* The date of the session. This will be null for phantoms and session that are not yet started */
 "Site": "Montreal Neurological Institute",
 "ScanType": "t2", /* Acquisition protocol */
 "QC_status": "Pass|Fail|null",
 "Selected": "true|false|null",
 "Link": "\/candidates\/300022\/V1\/images\/loris-MRI_123456_V1_t2_001.mnc", /* URL relative to this API */
 "InsertTime": "2016-08-09T14:15:30-05:00" /* The inserted date ISO 8601 */
 },
 ...
]
}

It is possible to provide a GET parameter named since where the value need to be a date or datetime.

ex: 2016-08-09 or 2016-08-09 10:00:00 or 2016-08-09T10:00:00-05:00

We recommend using a format that includes timezone.

2.1.2 Single project instruments

GET /projects/$ProjectName/instruments/

Will return a JSON object of the form:

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Instruments": {
 "InstrumentName" : {
 "FullName" : "Long Name",
 "Subgroup" : "Subgroup Name",
 "DoubleDataEntryEnabled" : boolean
 },
 "Instrument2" : {
 "FullName" : "Long Name",
 "Subgroup" : "Subgroup Name",
 "DoubleDataEntryEnabled" : boolean
 },
 ...
 }
}

Where the InstrumentNames are the “Short Name” of all the instruments used/installed in this project.

2.1.3 Single project visits

GET /projects/$ProjectName/visits/

Will return a JSON object of the form:

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Visits" : ["V1", "V2", ...],
}

Where V1, V2, … are the visits that may exist for this project

2.1.4 Single project candidates

GET /projects/$ProjectName/candidates/

will return a JSON object of the form:

{
 "Meta" : {
 "Project" : "ProjectName"
 },
 "Candidates" : ["123456", "342332", ...],
}

where 123456, 342332, etc are the candidates that exist for this project.

2.2 Instrument Forms

GET /projects/$ProjectName/instruments/$InstrumentName

Will return a 200 response on success and 404 Not Found if $InstrumentName is not a
valid instrument for this instance of Loris.

This will return a JSON representation of the instrument form. If available, rules and form will
be combined into a single JSON object. The format for the JSON returned is specified in the
accompanying InstrumentFormat.md and RulesFormat.md documents. The JSON document can be used
to render the form by a client.

PUT and PATCH are not supported for instrument forms.

Methods for getting/putting data into specific candidates are specified in section 3.

3.0 Candidate API

The /candidate portion of the API is used for retrieving and modifying candidate data and
data attached to a specific candidate or visit such as visits or instrument data. Portions
of this reference a CandidateObject. A CandidateObject is a JSON object of the form:

{
 "CandID" : CandID,
 "Project" : ProjectName,
 "PSCID" : PSCID,
 "Site" : Site,
 "EDC" : "YYYY-MM-DD",
 "DoB" : "YYYY-MM-DD",
 "Gender" : "Male|Female"
}

representing a candidate in Loris.

GET /candidates/

will return a JSON object of the form:

{
 "Candidates" : [CandidateObject1, CandidateObject2, CandidateObject3, ...]
}

containing ALL candidates present in this Loris instance.

A new candidate can be created by sending a POST request to /candidates.

The body of the POST request should be a candidate key with a JSON object of the form:

{
 "Candidate" : {
 "Project" : ProjectName,
 "PSCID" : PSCID,
 "EDC" : "YYYY-MM-DD",
 "DoB" : "YYYY-MM-DD",
 "Gender" : "Male|Female",
 "Site" : SiteName,
 }
}

EDC is only required if useEDC is enabled for the project according to the
project settings.

PSCID is only required if the generation type in the Loris config is set to
“prompt”.

A response code of 201 Created will be returned on success, 409 Conflict if
the PSCID already exists, 403 Forbidden when the user is creating a candidate at
a site other than the list of sitenames the user is affiliated with, and a 400
Bad Request if any data provided is invalid (PSCID format, date format, gender
something other than Male|Female, invalid project name, invalid sitename, etc).
A successful POST request will return a CandidateObject for the newly created
candidate.

PUT / PATCH methods are not supported on /candidate in this
version of the Loris API.

3.1 Specific Candidate

If a GET request for a candidate is issued such as

GET /candidates/$CandID

A JSON object representing that candidate will be returned.

The JSON object is of the form:

{
 "Meta" : CandidateObject,
 "Visits" : ["V1", "V2", ...]
}

where V1, V2, etc are the visit labels that are registered for this
candidate.

PUT / PATCH are not supported for candidates in this version of the
API.

It will return a 200 OK on success, a 404 if the candidate does not exist, and
a 400 Bad Request if the CandID is invalid (not a 6 digit integer). The same is
true of all of the API hierarchy under /candidates/$CandID.

3.2 Getting Candidate visit data

A GET request of the form:

GET /candidates/$CandID/$VisitLabel

Will return a JSON object of the metadata for that candidate’s visit.

The JSON object is of the form:

{
 "Meta" : {
 "CandID" : CandID,
 "Visit" : VisitLabel,
 "Site" : SiteName,
 "Battery": "NameOfSubproject"
 },
 "Stages" : {
 "Screening" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 },
 "Visit" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 },
 "Approval" : {
 "Date" : "YYYY-MM-DD",
 "Status" : "Pass|Failure|Withdrawal|In Progress"
 }
 }
}

A PUT of the same format but with only the Meta fields will create the VisitLabel
for this candidate, in an unstarted stage if the Visit label provided is valid.

PATCH is not supported for Visit Labels.

It will return a 404 Not Found if the visit label does not exist for this candidate
(as well as anything under the /candidates/$CandID/$VisitLabel hierarchy)

Any of the Stages may not be present in the returned result if the stage has not
started yet or is not enabled for this project (ie. if useScreening is false in
Loris, or Approval has not occurred)

3.3 Candidate Instruments

GET /candidates/$CandID/$VisitLabel/instruments

Will return a JSON object of the form:

{
 "Meta" : {
 "CandID" : CandID,
 "Visit" : VisitLabel
 },
 "Instruments" : ["InstrumentName", "AnotherInstrument", ...]
}

Where the instruments array represents the instruments that were administered for that
candidate at that visit. InstrumentNames are the short names and the forms for them
SHOULD all be retrievable through the project portion of the API.

PUT / PATCH / POST are not currently supported for candidate instruments.

3.3.1 The Candidate Instrument Data

GET /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]
PUT /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]
PATCH /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]

These will retrieve or modifiy the data for $InstrumentName. If /dde is present, the double data
entry form of the data will be retrieved/modified. If absent, the “single data entry” version
of the form is used instead.

The format returned by a GET request is a JSON document of the form:

{
 "Meta" : {
 "Instrument" : $InstrumentName,
 "Visit" : $VisitLabel,
 "Candidate" : $CandID,
 "DDE" : boolean
 },
 "$InstrumentName" : {
 "FieldName1" : "Value1",
 "FieldName2" : "Value2",
 ...
 }
}

Including the values of ALL fields for this instrument, including score field values.

The body of a PUT request to the same URL MUST contain a JSON object of the same format. Data PUT
to the URL SHOULD contain all fields with data entry. The server will null the data for keys not
specified. A PUT request MAY not specify score columns that will be calculated/overwriten by
server-side scoring. If the client attempted to score fields client-side and the value passed by the PUT
request conflict with the server-side calculation of the score, the server-side calculation will win.
Any keys specified in the document PUT that do not match a corresponding field in the form MAY be ignored.

The specification for PATCH request is similar to a PUT request, with the exception that any
fields not specified MUST be unmodified by the server rather than nulled. In most cases a series
of PATCH requests SHOULD be used rather than a single PUT request for a client with pagination.

A 200 OK will be returned on success, and a 404 Not Found if $InstrumentName is not a valid instrument installed in this Loris instance.

3.3.2 Instrument Flags

GET /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags
PUT /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags
PATCH /candidates/$CandID/$VisitLabel/instruments/$InstrumentName[/dde]/flags

This URL is used to GET and modify flags for an instrument. The standard GET/PUT/PATCH
rules apply. However, PATCH and PUT requests MUST include the “Meta” attribute and all
fields in it MUST be specified and match the values in the URL, otherwise a “400 Bad request”
error is returned and no data is modified. Like instruments, the [/dde] component is optional
and used to differentiate single data entry and double data entry flags.

The “Validity” flag may be missing, if the ValidityEnabled flag is not true for this instrument.

The format of the JSON object for these URLS is:

{
 "Meta" : {
 "Candidate" : CandID,
 "Visit" : VisitLabel,
 "Instrument" : InstrumentName,
 "DDE" : boolean
 },
 "Flags" : {
 "Data_entry" : "In Progress|Complete",
 "Administration" : "None|Partial|All",
 "Validity" : "Questionable|Invalid|Valid"
 }
}

4.0 Imaging Data

The imaging data mostly lives in the /candidates/$CandID/$Visit portion of the REST API
namespace, but is defined in a separate section of this document for clarity purposes.

4.1 Candidate Images

GET /candidates/$CandID/$Visit/images

A GET request to /candidates/$CandID/$Visit/images will return a JSON object of
all the images which have been acquired for that visit. It will return an object of
the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 },
 "Files" : [{
 "OutputType" : "native",
 "Filename" : "abc.mnc",
 "AcquisitionType" : "t1w/t2w/etc",
 }, /* More files */]
}

4.2 Session Imaging QC

GET /candidates/$CandID/$Visit/qc/imaging
PUT /candidates/$CandID/$Visit/qc/imaging

To retrieve the session level imaging QC data for a visit, a request can
be made /candidates/$CandID/$Visit/qc/imaging. It will return a JSON object
of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel
 },
 "SessionQC" : "Pass|Fail"
 "Pending" : boolean
}

A PUT to the same location will update the QC information.

4.3 Image Level Data

GET /candidates/$CandID/$VisitLabel/images/$Filename

Returns raw file with the appropriate MimeType headers for each Filename retrieved from
/candidates/$CandID/$Visit/images.

Only GET is currently supported, but future versions of this API may include PUT
support to insert new (or processed) data into LORIS.

4.3.1 Image Level QC Data

GET /candidates/$CandID/$VisitLabel/images/$Filename/qc
PUT /candidates/$CandID/$VisitLabel/images/$Filename/qc

Returns file level QC information. It will return a JSON object of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "QC" : "Pass|Fail",
 "Selected" : boolean,
 "Caveats" : [
 {
 "Severity" : $severity,
 "Header" : $header,
 "Value" : $headerValue,
 "ValidRange" : $headerValidRange,
 "ValidRegex" : $headerValidRegex
 },
 {
 "Severity" : $severity,
 "Header" : $header,
 "Value" : $headerValue,
 "ValidRange" : $headerValidRange,
 "ValidRegex" : $headerValidRegex
 }
]
}

PUT requests to the same URL will update the QC information.

4.4 Alternate formats

There are occasions where you may want to retrieve a file in a different format
than it is stored in LORIS. This can be achieved by adding /format/$FormatType
to the URL in the API. Currently supported other formats are below. Other formats
may be added in a future version of this API.

An attempt to convert an image to an unsupported format may result in a
415 Unsupported Media Type HTTP error.

4.4.1 Raw Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/raw

This will return the data in raw format (ie. the output of mnc2raw)

4.4.2 BrainBrowser Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/brainbrowser

This (in combination with raw) will let you extract the headers in a JSON
format that BrainBrowser can load. It will return a JSON object of the format

{
 "xspace": {
 "start":"",
 "space_length":"",
 "step":""},
 "yspace": {
 "start":"",
 "space_length":"",
 "step":""
 },
 "zspace": {
 "start":"",
 "space_length":"",
 "step":""
 },
 "order":["xspace","zspace","yspace"]
}

4.4.3 Thumbnail Format

GET /candidates/$CandID/$VisitLabel/images/$Filename/format/thumbnail

This will return a JPEG image that can be used as a thumbnail to represent this
imaging acquisition statically (such as in the LORIS imaging browser.)

4.5 Image Headers

The LORIS API allows you to extract headers from the images in a RESTful manner.
The following methods are defined:

4.5.1 Header Summary

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers

This will return a JSON summary of the important headers for this filename. It
will return a JSON object of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "Physical" : {
 "TE" : "",
 "TR" : "",
 "TI" : "",
 "SliceThickness" : "",
 },
 "Description" : {
 "SeriesName" : "",
 "SeriesDescription" : ""
 },
 "Dimensions" : {
 "XSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "YSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "ZSpace" : {
 "Length" : "",
 "StepSize" : ""
 },
 "TimeDimension" : {
 "Length" : "",
 "StepSize" : ""
 }
 },
 "ScannerInfo" : {
 "Manufacturer" : $scannerManufacturer,
 "Model" : $scannerModel,
 "SoftwareVersion" : $scannerSoftwareVersion,
 "SerialNumber" : $scannerSerialNumber,
 "FieldStrength" : $scannerFieldStrength
 }
}

All of the dimensions are optional and may not exist for any given
file (for instance, a 3D image will not have a time dimension.)

4.5.2 Complete Headers

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers/full

This will return a JSON object with ALL headers for this acquisition.

The JSON will be of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename
 },
 "Headers" : {
 "dicomheader" : "value",
 /* more headers ... */
 }
}

4.5.3 Specific Header

GET /candidates/$CandID/$VisitLabel/images/$Filename/headers/$HeaderName

This will return a JSON object that extracts one specific header from $Filename.

The JSON object is of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 "File" : $Filename,
 "Header" : $HeaderName
 },
 "Value" : string
}

5.0 DICOM Data

Like the imaging data, the DICOM data mostly lives in the /candidates/$CandID/$Visit
portion of the REST API namespace, but is defined in a separate section of this
document for clarity purposes.

5.1 Candidate DICOMs

GET /candidates/$CandID/$Visit/dicoms

A GET request to /candidates/$CandID/$Visit/dicoms will return a JSON object of
all the raw DICOM data which have been acquired for that visit. It will return an
object of the form:

{
 "Meta" : {
 "CandID" : $CandID,
 "Visit" : $VisitLabel,
 },
 "DicomTars" :
 [
 {
 "Tarname" : "DCM_yyyy-mm-dd_ImagingUpload-hh-mm-abc123.tar",
 "SeriesInfo" :
 [{
 "SeriesDescription" : "MPRAGE_ipat2",
 "SeriesNumber" : "2",
 "EchoTime" : "2.98",
 "RepetitionTime" : "2300",
 "InversionTime" : "900",
 "SliceThickness" : "1",
 "Modality" : "MR",
 "SeriesUID" : "1.2.3.4.1107",
 },
 {
 "SeriesDescription" : "BOLD Resting State",
 "SeriesNumber" : "5",
 "EchoTime" : "30",
 "RepetitionTime" : "2100",
 "InversionTime" : NULL,
 "SliceThickness" : "3.5",
 "Modality" : "MR",
 "SeriesUID" : "3.4.5.6.1507",
 }]
 },
 {
 "Tarname" : "DCM_yyyy-mm-dd_ImagingUpload-hh-mm-def456.tar",
 "SeriesInfo" :
 [{
 "SeriesDescription" : "MPRAGE_ipat2",
 "SeriesNumber" : "2",
 "EchoTime" : "2.98",
 "RepetitionTime" : "2300",
 "InversionTime" : "900",
 "SliceThickness" : "1",
 "Modality" : "MR",
 "SeriesUID" : "1.7.8.9.1296",
 }]
 }
]
}

The Modality header in the SeriesInfo is either MR or PT for MRI or PET
scans, respectively.

5.2 Tar Level Data

GET /candidates/$CandID/$VisitLabel/dicoms/$Tarname

Returns/Downloads a tar file which contains a .meta and a .log text
files, and a .tar.gz of the raw DICOM data as acquired during the candidate
scanning session, and as retrieved from /candidates/$CandID/$Visit/dicoms.

Only GET is currently supported.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

